找回密码
 立即注册

微信扫码 , 快速开始

北京大学邱泽奇教授|认知域:从习以为常到人机互生

2023-7-19 12:26| 发布者: admin| 查看: 3057| 评论: 0|来自: 《学术前沿》

摘要: 如果认知域仅限于认知科学和人工智能领域,或许我们的讨论可以在这里暂告段落。但必须引起注意的是,数字技术不只是影响了人工智能,还影响了众多领域,如生命科学。 ... ...
接上页


遗憾的是,一方面,事物的稳定性不是一成不变的,天体在变,生态在变,物质关系在变,社会也在变。不过,只要变化速度不足以影响模式化认知的形成和调整,模式化认知依然是有效的认知域实践。另一方面,维系稳定性也需要满足一定的条件,尤其是面对有机世界,如维系自然生态的稳定性;维系社会的稳定性更是有条件的,诸子百家强调社会秩序的目的也是为维系社会的稳定性而试图形塑社会共同的认知。

一旦变化速度影响到人们模式化认知的形成,自然科学会运用实验的条件设置来维系物质特征/关系的稳定性,为认知形成提供机会,如给定温度、湿度、气压等环境条件,维系物质之间关系的稳定性,如控制化合物中不同物质的比例关系、化合时的环境条件和催化条件等。社会科学涉及人类自身,受到人类及社会伦理的约束,无法运用实验方法的条件设置来维系社会特征/关系的稳定性,如,我们无法让一部分人接受某种程度的教育、让另一部分人接受另一种程度的教育或不接受教育来检验受教育程度与人生成就之间的关系。

幸运的是,除了社会文化,生计技术的稳定性也影响着社会特征/关系的稳定性。农业技术的稳定性形塑了乡村社会特征/关系的稳定性。中外乡村社会发展的历史都证明,乡村是人口规模相对较小的聚落社会、熟人社会、互助社会。乡村社会的社会结构和社会环境相对稳定,足以让人们对乡村社会形成模式化的认知。费孝通的《乡土中国》之所以到如今还能引发读者的共鸣,条件在于乡土社会是相对稳定的。习以为常是对乡村社会认知域实践的贴切刻画。

与农业社会相较,工业社会的特征/关系是不那么稳定的,特别是在工业社会后期,人口大量且快速的流动改变了形成模式化认知的必须条件。从熟悉的地方到陌生的地方,从相对简单且容易的乡村到相对复杂且困难的城市,人们身处的环境越来越不稳定,面对的事物也越来越陌生,任何流动中的人都会体验到,在乡村的认知经验无法运用于城市,在甲地的认知也难以套用到乙地,以至于人们形成模式化认知变得越来越困难。

面对不稳定的认知环境和陌生的认知对象,人们又会如何展开认知实践呢?顺应环境变化、面对陌生对象的认知是认知域实践的另一个极值,即非模式化认知的心随境转。需要特别说明的是,这里的“心”并非只指心理,还指心目、心境、心态等,“转”则强调认知随环境的变化、认知对象的变化而不再模式化,即强调认知的应变性。

追溯起来,应变也是认知常态的一种。如前所述,只是在从前,环境的变化、事物的变化,其速度不足以影响到形成模式化的认知。人们也总处在环境的变化和事物的变化中,通过对模式化认知的调整来适应变化。常态的变化,如兴衰成败,其实是人们熟悉的变化,是模式化认知的一部分。

可是,当环境和事物变化的速度超过了人们建立和调整模式化认知的速度时,非常态的变化便出现了。非常态的变化是人们不熟悉的变化,是对模式化认知的挑战。在人们不熟悉的变化中,快速的、不断的变化又构成了对认知的最大挑战,也催生了另一种心随境转的应变性认知:随机应变。

人类历史上有许多随机应变的经典案例,大到著名的战争,小到个人境遇,如空城计。说到计,人们自然会想到战争。的确,兵家之计是心随境转的经典。与日常相较,战争的特点在于战场格局的快速变化。面对快速变化,一方面,兵家依然希望运用模式化认知,强调对战场格局的“知”。如,《孙子兵法》里的“知”字多达79处,孙子甚至建立了一套“知胜”的体系(姚振文,2016),正所谓“知彼知己,百战不殆”。兵家之计的经典性还在于,一方的“知”意味着会通“道、天、地、将、法”,意味着对战争条件、形势、策略、方案、胜算的认知;反过来,对另一方的不知则意味着因对方诡道干预而陷入“不知其所守”“不知其所攻”的窘境。

另一方面,正因为有可能不知,兵家还强调应变,既是为了让己方“知”,也是为了让对方“不知”。如,假道伐虢,攻其不备、出其不意,“利而诱之,乱而取之”“怒而挠之,卑而骄之”,或,“能愚士卒之耳目,使其无知;易其事,革其谋,使人无识;易其居,迂其途,使人不得虑”;“犯之以事,勿告以言;犯之以利,勿告以害”;“若驱群羊,驱而往,驱而来,莫知所之”,目的正是动摇其可检验的模式化认知,最终使“三军可夺气,将军可夺心”。兵家之计正是运用知与不知的快速变化,干预对方的认知形成或让对方形成错误的认知,如错误的情绪、态度、判断、决策等,让心随境转成为战场事实,成为认知域作战的工具。

一些著名的科学实验也证明非模式化认知的心随境转。斯坦福监狱实验(Stanford prison experiment)是一个典型的例子。1971年,斯坦福大学心理学家泽姆巴多(Philip Zimbardo)设计实施了一项角色扮演实验,他将从斯坦福大学招募的学生志愿者指派为两组角色,一组为监狱看守,一组为监狱囚犯,并将两组人置于模拟监狱环境中。实验观察表明,看守和囚犯很快形成对自己角色的认知,且将认知付诸行动。三分之一的看守显示出真正的虐待狂倾向,许多囚犯则在情感上受到创伤,还有2人不得不提前退出实验。在实验进程中,看守和囚犯的认知与行为一步步地超越了实验预设的界限,以至于泽姆巴多不得不提前终止整个实验(Zimbardo, 1971)。

在认知域实践中,1990年代的南非大选(Piombo and Nijzink, 2005)、2008年的金融危机(Lewis, 2011)、2011年的“阿拉伯之春”(Anderson, 2011)、2016年的美国大选(Allcott and Gentzkow, 2017)则进一步呈现了心随境转的认知域实践。值得进一步探讨的是,与习以为常采用教化的方式不同,尽管这些案例都呈现了认知干预带来的心随境转,可是在信息获取、信息加工、认知形成、认知影响等认知域实践每个环节都大不相同,1990年代的南非大选运用大众传媒,2008年的金融危机采用虚假信息散播,2011年的“阿拉伯之春”则运用人际社交网络,2016年的美国大选则实施个性化的精准信息投放。

由此,心随境转的极值性也呈现出一个总的趋势,那就是,促使心随境转的信息投喂越来越个性化和精准化,给被投喂对象进行信息加工的时间越来越短、形成模式化认知调整的机会越来越少,以至于被投喂对象的认知形成越来越像是“习以为常”,认知影响也越来越从对群体性的影响转向通过对个体的影响进而形成涌现的社会效应。当认知形成仓促且无法获得检验时,认知的客观性或正确性便成为了一个巨大的问号,这也是认知域在当下和未来面对的最大挑战。

人工智能与认知域实践的当下挑战

承接认知域传统实践的心随境转,数字技术的发展推动了人类的连接泛在,彻底改变了人类认知的环境与面对的对象,进而让认知从时常面对稳定的环境和熟悉的事物转变为始终面对变化的环境和陌生的事物,使得人类在认知形成和认知影响中不得不依赖于不断发展的机器智能。这一依赖覆盖了从信息获取、信息加工到认知形成、认知影响等整个认知域。数字技术也因此从支持人类认知的工具转变为介入人类认知的无意识主体,反过来,又迫使有意识的人类主体在机器智能的创新和运用中面对艰难的社会选择:让机器智能成为支持人类认知的帮手,抑或是成为干预人类认知的工具。可无论是帮手还是工具,在认知域,破解人类心智的技术会聚已然展开,人机互生的大趋势已初现端倪且无法逆转,针对认知域实践的挑战似乎也走到了人类不得不进行选择的那一步,而这一切都源自认知科学的创新与运用。

从认知科学到机器智能。正如开篇简述,认知科学是一个问题导向的科学领域,横跨哲学、心理学、计算机科学、神经科学、语言学与人类学等学科,旨在揭示人类心智与思维的奥秘。人们希望通过对人类认知的猜想、实证、拟合、迭代,在人类主体之外创造出具有人类认知机制的机器智能。

科学史上的一个巧合是,在20世纪50年代,计算机科学领域的西蒙(Herbert A. Simon)和他的学生纽厄尔(Allen Newell)首先提出了人类思维机制的构想(Newell et al., 1958),将人类对信息加工过程转化为符号互动过程,通过计算、检验(Newell & Simon, 1956; Newell et al., 1959),证明了可以用若干基本信息加工机制解释人类认知现象(Simon & Newell, 1971)。几乎同时,认知心理学家们提出了信息加工理论(Information Processing Theory),认为人的心智是类似于计算机的信息加工系统,知觉、记忆、语言、思维、决策等心理过程可以被理解为信息获取、信息加工、认知形成等不同的认知过程(Miller, 1956; Neisser, 1967)。

计算机科学与认知心理学对人类认知理解的不谋而合形成了早期的学科协同,产生了那个时代的人工智能。如,纽厄尔和西蒙成功开发了“逻辑理论家”(Newell & Simon, 1956)、“通用解难器”(Newell et al., 1959)等模拟人类认知的计算机程序,且运用了人类解决问题(problem-solving)时采用的启发式策略(heuristic methods)。启发式策略实则是认知心理学观察到的人类认知特征,如,只能一步一步按次序处理信息,而不能平行处理;能够迅速形成短期记忆,但记忆的容量和持续时间有限;只有花费较长时间才能形成更加持久、容量更大的长期记忆等。对启发式策略的运用使计算机不再只是执行数值运算的劳动力,而可以用有目的的搜寻和有限的运算去替代穷举法,呈现了机器智能的最早形态。也就是,用一套清晰、明确、可操作的计算机运行程序拟合人类凭借有限认知能力解决无边问题的机制。

在机器智能基本框架的基础上,对人类认知的探讨沿着人类认知的三个基本维度,即信息获取、信息加工、认知形成等分别展开。如信息获取涉及感知、学习;信息加工涉及记忆、语言、思维;认知形成涉及判断、观点、选择、决策等。在各学科的推进中,安德森(John R. Anderson)等人提出了人类联想记忆模型(human associative memory model)(Anderson & Bower, 1973);明斯基(Marvin Minsky)提出了认知过程框架(frame),即由以往经验形成的、描述典型情境的等级性信息结构(Minsky, 1974),习以为常的模式化认知便是运用框架的例证。尚克(Roger Schank)提出了自然语言理解的概念依存模型(concept dependency theory),把对语言的理解还原为对基本语义单元及概念关系的操作程序(Schank, 1972)。在学科交叉中,计算机科学家设计并运行了一种初具通用智能(general intelligence)、能够完成一系列主要认知任务的信息处理系统(Laird et al., 1987; Anderson, 1983)。

与此同时,基于计算机,跨学科的科学家们试图超越对单个认知过程的零散模拟,致力于建立一套统一的认知理论(Newell, 1994),建立了一个完整且统一的认知架构。如,确认人类认知不是黑盒,而是可以运用计算机进行拟合的一组科学机制,其中最重要的是输入输出(I/O)机制。

可是,如何深化对输入、加工、输出的认识,并付诸认知域实践呢?对此,符号主义(symbolism)与神经生理学之间构成了激烈的争论(Lighthill, 1973),结果是,神经生理学逐渐成为拟合人类认知的主要灵感来源。事实上,早在1943年,麦卡洛克(Warren S. McCulloch)和皮茨(Walter Pitts)就指出,人类认知的本质是神经元的计算活动(McCulloch & Pitts, 1943)。在此基础上,罗森布拉特(Frank Rosenblatt)提出了更加完善的可操作的感知机(perceptron)神经元模型(Rosenblatt, 1957),刻画了认知的底层机制:神经元接收感官输入的信息并执行运算,当运算结果达到阈值便会激活下一级神经元接受信息并执行新的计算;无数神经元相互连接构成神经网络,且能根据反馈信息调整运算过程的权重和执行的阈值条件,深化认知。感知机理论开启了从神经生理学视角阐释人类认知机制的先河,神经元网络也成为随后努力的焦点。在此基础上,多层神经网络模型模拟了神经元相互连接形成的等级结构和功能分化结构,拥有了在多层上发生的深度学习(deep learning)能力。计算机科学家建立的模拟人类认知的神经网络(artificial neural networks)已然成形,机器学习(machine learning)成功地模拟了更多人类认知,并且在诸多方面超越了人类。

神经网络实践的成功证明了人类认知并非以完整形态的符号在加工,任何的心随境转都不过是从类似于习以为常的底层(sub-symbolic layers)涌现出来的“认知”集合(emergent properties)(Hopfield, 1982; McClelland et al., 2010),也就是说人的认知并非始终是结构化的。如此,如果说用于加工的信息来自于环境,则认知与环境的关系即意味着“信息获取”作为输入部分自然地进入到了认知域的视野,成为认知域探索的重要一环,学习与调试成为了理解人类认知的又一个阶段。

数据的积累和算力的发展推动了以神经网络模型和机器学习技术为代表的人工智能的发展。在人类之外,机器已然可以模拟知觉、记忆、运算、语言、求解、决策等人类认知,并且在各个环节的信息容量、工作载荷、执行程度和完成质量等方面都有远超人类之处。心灵哲学和心理科学开始重新审视认知科学及其应用,在认知细节拟合基础上,从整体上提出了相互关联的认知(不只是人类认知)的四种类型:具身认知(embodied cognition)、嵌入认知(embedded cognition)、延展认知(extended cognition)、生成认知(enactive cognition),并认为,认知主体嵌入在环境中,通过与环境的相互作用,动态生成认知,进一步,又将认知延展到环境之中(Wilson, 2008; Rowlands, 2010)。

到此,认知的机制被理解为感知环境、学习并调整,按自由能量原则(free energy principle)进行优化的预测和行动(Friston, 2010; Clark, 2013, 2015),为机器智能提供了一个更为整体的实践路径。正是在这个意义上,我们认为对人工智能能力的判别(如弱人工智能、强人工智能)(Searle, 1980)不过是以人类认知能力为基准的推断,不仅无法否认机器智能(Pollock, 1995),也无法让人类回避机器智能给认知域带来的挑战。

迈向人机互生的认知域。在认知域,从第一台电子计算机诞生开始,机器在信息获取、信息加工、认知形成和认知影响的某个环节始终在不断地超越人类。最初是在信息加工环节,1946年2月14日,埃尼亚克(ENIAC)的出现标志着机器智能对人类计算能力的超越。如果希望了解机器智能到底在哪些环节超越了人类智能,我们可以对机器智能在此后的发展建立一条时间线,标示出机器智能超越人类智能的每一个节点。不过,在生成式人工智能出现之前,无论人类的认知能力用于何处,机器智能始终是人类认知的工具,是帮助人类提升认知的帮手。可是,当生成式人工智能获得了人类某个年龄的认知能力,在诸多曾经被认为是人类优势的领域(如编程)也具有了高阶能力时,人们才幡然醒悟,机器智能或许不再只是提升人类认知的帮手,而是正在变成挑战人类认知形成的机器主体。



路过

雷人

握手

鲜花

鸡蛋

最新评论

QQ|手机版|小黑屋|博士驿站:连接全球智慧,共创博士人才生态圈 ( 浙ICP备2023018861号-3 )平台提供新鲜、免费、开放、共享的科技前沿资讯、博士人才招聘信息和科技成果交流空间。 平台特别声明:线上内容(如有图片或视频亦包括在内)来自网络或会员发布,均已备注来源;本站资讯仅提供信息和存储服务。Notice: The content above (including the pictures and videos if any) is uploaded and posted by user , which is a social media platform and only provides information storage services.

GMT+8, 2025-5-3 10:39

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

返回顶部